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Basin explosions and escape phenomena in
the twin-well Duffing oscillator: compound global
bifurcations organizing behaviour
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The sinusoidally drive, twin-well Duffing oscillator has become a central archetypal
model for studies of chaos and fractal basin boundaries in the nonlinear dynamics of
dissipative ordinary differential equations. It can also be used to illustrate and
elucidate universal features of the escape from a potential well, the jumps from one-
well to cross-well motions displaying similar characteristics to those recently charted
for the cubic one-well potential. We identify here some new codimension-two global
bifurcations which serve to organize the bifurcation set and structure the related
basin explosions and escape phenomena.
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1. Introduction

Many new and exotic phenomena are being discovered and elucidated in the current
renaissance of nonlinear dissipative dynamics (Abraham & Shaw 1982-8;
Guckenheimer & Holmes 1983; Thompson & Stewart, 1986; Moon 1987). In
particular, the unexpected chaotic behaviour of deterministic systems (Lorenz 1963 ;
Ueda 1973, 1978) has provoked great interest among physical scientists, blurring the
previous sharp distinctions between deterministic and stochastic views of the world.
This unexpected behaviour embraces both the steady chaotic motions on chaotic
attractors, and the transient chaos that can occur even in situations where all the
final attractors are regular and periodic. One important consequence of these chaotic
transients is that the basin boundaries between competing, coexisting steady states
can have an infinitely tangled homoclinic structure (Hayashi et al. 1970), whose
fractal properties have recently been the object of much study (McDonald ef al. 1985
Moon & Li 1985; Eschenazi et al. 1989; Thompson & Soliman 1990). Here, even
though any trajectory over a finite time interval depends continuously on the initial
conditions, the dependence can be extremely sensitive; so when final behaviour is
considered in the limit as the time tends to infinity, the attractor ultimately chosen
may depend discontinuously on the initial conditions in a substantial region of phase
space corresponding to the fractal basin boundary. From this point of view, long-
term predictability is lost.

Chaotic attractors, their bifurcations, and fractal basin boundaries have recently
been shown to play a key role in the escape of periodically driven oscillators from a
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Figure 1. A sketch of the major bifurcation arcs in the (k, 4) parameter space:
the rectangle shows the region of the current investigation.

potential well, a problem of very wide interest to chemists, physicists and engineers
(Thompson 1989). The present work examines the twin-well forced Duffing oscillator,
and shows that as a control parameter is slowly varied there can arise abrupt and
discontinuous changes in the fractal boundaries (fractal-fractal basin bifurcations or
basin explosions), which are closely related to the escape from one-well to cross-well
motions. The basin bifurcations and escape curves are intimately interwoven with
the more familiar phenomena of nonlinear dynamics (saddle-node fold bifurcations,
period-doubling flip bifurcations, homoclinic tangencies, blue sky catastrophes, etc.)
in a complex central region of control space. The exploration and clarification of this
region, whose phenomena seem to have significant general relevance to the dynamics
of driven nonlinear oscillators, is the major contribution of the present study.

2. Overview and some counter-intuitive escape routes

In our study of the twin-well Duffing oscillator we shall be holding the driving
frequency constant: at a value which we shall see is 10:/2 (~ 1.58) times the linear
natural frequency of small undriven, undamped oscillations in one of the two wells.
The driving amplitude 4 and the damping magnitude £ are then the two control
parameters of interest, and figure 1 gives a schematic overview of some of the major
bifurcations in (4, k) space. The small rectangle shows the domain of our main
investigation, 0.3 < 4 < 0.36, 0.14 < k < 0.24, which is blown-up into figure 9, but
before proceeding it is of interest to examine some of the overall escape features.

Escape from single-well to cross-well motions will occur on crossing the indicated
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bifurcation are, which means that escape can easily be triggered, counter-intuitively,
by a decrease in the forcing magnitude, 4. Escape is clearly achieved most simply
from zero forcing amplitude, by gradually increasing A, at fixed damping & < K,
along a horizontal path below the segment KL. However, starting again from zero
forcing with damping greate. than K, the forcing amplitude may be increased
gradually from zero without causing escape (in the sense that we shall explain later
in terms of the dynamic hilltop 'D). By following a path above segment KL to the
right of L, then decreasing damping below the level of KL, it is then possible to
trigger escape by a subsequent decrease in the forcing amplitude. (It should be noted
that further attractors not described here may coexist with the one-well or cross-well
attractors whose régimes are indicated in this figure; but these additional attractors
are not observed in the scenarios just described.)

Similar counter-intuitive behaviour can also be seen in Thompson (1989, fig. 3) for
the escape from his cubic single-well. On this figure we could first increase the forcing
magnitude ¥ from zero at a sufficiently high frequency (above w®) until the response
is close to a fold (line GG): we could then reduce the forcing frequency at constant
F to arrive above a Feigenbaum cascade: a final reduction in F would lead to period-
doubling, chaos and escape along the route gfF of Thompson (1989, fig. 4a).

3. System definition and attractor bifurcations
We consider Duffing’s equation,
F+ki+ax+a® = Asint, (1)
which we can write as two first-order equations,
&=y, y=—ky—ar—a*+Asint, (2)

with a dot denoting differentiation with respect to the time, ¢{. Equation (2) can of
course be conveniently converted to three autonomous equations of a ring model by
replacing ¢ by 6 and adding the extra dummy equation 6 = 1 with 0 < 0 < 2n. We
shall in fact hold & constant at —0.2 throughout the paper. This equation describes
the motions of a forced oscillator with a nonlinear stiffness function, and is one of the
most simple and representative nonlinear systems (Guckenheimer & Holmes 1983 ;
Moon 1987): it represents, for example, the lateral vibrations of an elastic column
compressed by an axial force in excess of the critical Euler buckling load. In equation
(1) the parameter a is the linear restoring stiffness, and with « negative we have a
twin-well potential given by

V(iz) = lax?+1x* (a <0). (3)

With no forcing, 4 = 0, there exist two stable equilibrium states at x = & (— a)z. The
linear natural (undamped) frequency of these free vibrations, w,, is given by the
square root of the stiffness, a + 322, evaluated at either of the two equilibrium states:
hence w, = 2/10%, and the ratio of the driving frequency (w;=1) to this linear
frequency is 10:/2 ~ 1.58. With a small intensity of sinusoidal forcing, these two
point attractors become harmonic periodic attractors in the two wells, the one
realized in a given time integration depending of course on the starting conditions of
the motion. Notice that we use the adjective harmonic to mean isochronous,
describing motions that have the same period as the driving function. These steady
state solutions within a single well are called one-well motions. As we slowly vary the
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parameters, making A large for example, a one-well motion will sometimes escape
from its well to become a cross-well motion. The one-well and cross-well attractors
can be either periodic or chaotic, depending on the system parameters (Ueda et al.
1987).

The periodically forced second-order oscillator (1) requires three coordinates,
(%, y, t) to uniquely specify an initial condition for a continuous trajectory. However,
by the device of taking a Poincaré section, we may reduce the problem to a phase
space of dimension two, provided that we implicitly substitute a Poincaré map, or
diffeomorphism, for the original flow (Guckenheimer & Holmes 1983; Thompson &
Stewart 1986). Throughout this paper we use the Poincaré section obtained by
sampling trajectories of (1) stroboscopically at t = 2nn (n =0, 1, 2,...). As a result of
this sampling, periodic solutions of (1) become fixed points or periodic points in the
Poincaré section.

Bifurcations of the attractors relevant to the escape process are shown in the three
diagrams of figure 2 for three values of the damping parameter k, the steady-state
stroboscopically sampled x and y being plotted against the forcing amplitude 4. The
computations for these diagrams used single precision, fourth-order Runge-Kutta
numerical integrations with time step 21/60: for every new value of 4 a few hundred
forcing cycles were discarded to eliminate transients, and the representative steady-
state points were projected onto the x and y axes. Such bifurcation diagrams indicate
how the dynamical behaviour would evolve in a physical system in which the forcing
amplitude is varied in a slow quasi-static manner. In each diagram there exists at the
largest value of 4 two one-well motions (one in each well) and one resonant cross-well
motion, the one-well motions having already started a period-doubling cascade in the
case of figure 2¢. Notice that we reserve the adjective resonant for the large
amplitude cross-well harmonic motions of period 2n. Under decreasing 4, the cross-
well resonant motion is essentially unchanged, but the two complementary one-well
motions exhibit a cascade of period-doubling flip bifurcations leading to a one-well
chaotic attractor, and when 4 reaches 4., the one-well motions escape out of their
respective wells. However, in figure 2a and ¢ the escape is to a chaotic cross-well
motion, while in figure b escape involves a jump to the large amplitude resonant
state. Moreover, for the case in figure ¢ the cross-well chaotic attractor after escape
undergoes a subsequent discontinuous enlargement or explosion at A;. A classic
study of attractor explosion is that of Ueda (1980).

The goal of the present paper is to elucidate and explain these three escape
scenarios, and to do this we must look, not only at the attractors and their
bifurcations, but also at the basin boundaries and their bifurcations. In doing this,
we shall throughout focus particular attention on bifurcations which are dis-
continuous in the sense of Zeeman (1982) with the locus in phase space of an
attracting set and a basin, or both, changing discontinuously as a function of some
parameter.

4. Basin boundary bifurcations

Before presenting our studies of basin bifurcations (what Grebogi et al. (1987) call
basin boundary metamorphoses), we must here explain our notation for the fixed
points. We use the symbol S for a stable attracting solution (a sink), D for a directly
unstable saddle with positive mapping eigenvalues, and I for an inversely unstable
saddle with negative eigenvalues: notice that our restriction to a positive linear
damping coefficient, k, eliminates the possibility of an unstable repellor (a source), U,
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Figure 2. Projected bifurcation diagrams of steady-state motions at phase ¢ = 0 (mod 2x) for: (a)
k=0.164, 4 =0.32-0.35; (b) k= 0.150, 4 =0.32-0.35; (¢) k= 0.230, 4 = 0.30-0.33. In each
diagram 4 is decreased from three distinct starting conditions at the right-hand edge corresponding
to the two one-well motions and the single harmonic resonant cross-well motion : in (¢) the one-well
motions have already begun their period-doubling cascade at the starting value of 4.

due to constraints on the mapping eigenvalues (see, for example, Thompson, 1989).
These symbols carry suffices, 7, j, I, in the manner of ‘S!, with 4 indicating the order
of the periodic point (i =1 for a harmonic motion of period 2n, i =2 for a
subharmonic motion of period 4w, etc.), j indicting the sequence of movement from
one point to the next (so that I <j <¢), and [ representing the group of periodic
points (a different number / being assigned arbitrarily to each individual solution as
a distinguishing code). Suffices are however sometimes omitted, for simplicity, in
cases in which no confusion is possible. The symmetry of equation (2), associated
with its invariance under the transformation ¥ - —x,y - —y,{—>t+m, implies that
one-well solutions always come in pairs, one for each well; such pairs are given
identical symbols, but are distinguished by adding a prime to the solution in the
right-hand well. Finally, in the attractor—basin phase portraits, a solid black circular
dot is used to denote an unstable D solution; a hollow circular dot indicates a sink
(S); while a solid square dot indicates an unstable I solution.

4.1. Representative attractor-basin phase portraits

To summarize the phenomena under consideration, we show first in figure 3
examples of the attractor-basin phase portraits containing two symmetrically-
related one-well harmonic attractors, 'S and 'S’ together with the resonant cross-well
harmonic attractor, 2S. These three attractors are all 2n periodic motions, and are
represented by the three open circles in figure 3a. Notice that 'S and 'S” do not
appear to be symmetric in this figure because both are sampled stroboscopically at the
same phase ¢ = 0 (mod 2r); their symmetry would only be apparent if one of the two
were sampled at ¢ = m (mod 2m). The shaded region in figure 3a shows the basin of
attraction of the resonant cross-well attractor, while the blank region represents the
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Figure 3. Typical attractor-basin portrait and its blow-up, for k£ = 0.164, 4 = 0.345. Fixed points
shown are: 1D, (—0.0429, —0.2966); 'S, (—0.2187, —0.3315); 'S, (0.1142, —0.3203); 2D, (—0.5309,
—0.9492); 28, (—0.7785, 1.0949). In the portrait (a), dark grey denotes the basin of the cross-well
attractor 28, white denotes the union of the basins of 'S and 'S’. In the enlargement (b), dark grey
denotes the basin of the cross-well attractor %S, light grey denotes the basin of the one-well
attractor 'S, white denotes the basin of the one-well attractor 1S’

union of the basins of the one-well attractors, the fractal boundary of the resonant
cross-well basin being defined by the inset of the saddle solution #D. In computing
figure 3, and all attractor—basin portraits in this paper, a fourth-order Runge-Kutta
difference scheme with fixed step size equal to 2n/60 was used with double precision :
initial conditions were chosen on a uniform grid of 201 x 201 points, integrations
being continued for about 100 forcing cycles from each grid point.

Note that for brevity we shall hereafter describe all states other than the harmonic
cross-well resonant motion as non-resonant whether they be cross-well or one-well
motions: in particular, any one-well or cross-well motions that are not 2n periodic are
designated as non-resonant.

Figure 30 is a magnified blow-up of the non-resonant attractor basin, showing the
two one-well attractors 'S and 'S” and their individual basins (distinguished by the
white and light grey tone) separated by the inset of the hill-top saddle point *D. We
refer to 'D as the hill-top saddle because if we decrease the forcing amplitude to zero,
'D evolves smoothly to the unstable equilibrium point at @ = y = 0 which separates
the two potential wells. With non-zero forcing 'D represents a dynamic barrier
between potential wells. Some care is needed in formulating a precise definition of
this dynamic barrier in operational terms. In cases where 'D is not homoclinic, we
may characterize the dynamic barrier in relatively straightforward fashion by the
existence of a small neighbourhood of initial conditions around 'D whose right half
(demarcated by the inset or stable manifold of 'D) end up in the right-hand well,
while the left half settle to the left-hand well. However, in the parameter régime of
particular interest in this study, 'D is homoclinic, implying that either the basin
boundary between the left and right one-well attractors has an infinitely fine fractal
structure near 'D, or else there are no one-well attractors, only cross-well attractors.
In this case, the following more subtle characterization of the dynamic hilltop is
appropriate : in a sufficiently small neighbourhood of 'D, initial conditions in the left
half (demarcated by the inwards eigenvector and its local continuation as the inset)

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 4. Attractor—basin phase portraits for two values of 4 straddling 4, of figure 2a
with: (@) k£ =0.164, 4 = 0.345; (b) k = 0.164, 4 = 0.340.

always move to the left at the end of the first forcing cycle, while initial conditions
in the right half move to the right at the end of the first forcing cycle. Indeed, we shall
distinguish one-well motions from cross-well motions with reference to the dynamic
hill-top D and not with reference to the static hill-top x = y = 0.

We can see that in figure 3a, b the boundary separating the basin of 'S from the
basin of 1S” is tangled and has a fractal character. There do of course exist infinitely
many higher-order unstable subharmonics in these phase portraits which are not
shown here, but they exert no significant influence on the phenomena under
discussion in the present paper.

4.2. Fractal—fractal basin bifurcations

Figure 4 shows the attractor-basin phase portraits for two values of 4 on either
side of the critical value 4, of figure 2a. In progressing under decreasing 4 from
figure 4a to 4b the one-well stable fixed points have experienced a period-doubling
flip, but in both diagrams the union of the non-resonant basins is indicated by the
white : motions starting in the shaded region terminate on the cross-well resonant
motion. We see that in both diagrams of figure 4 the basin boundary has a fractal
structure, but a closer inspection reveals significant differences which are shown in
the blow-up of the framed regions in figure 5. In figure 5a the resonant region is
limited by the inset of the ¢ = 3 periodic point *D? which prevents the tails of the
resonant attracting region passing to the right of 2D®. However, in figure 5b it is the
inset of the ¢ = 3 periodic point 'D? which limits the penetration of the resonant
attracting region. This change in what Grebogi et al. (1987) term the accessible orbit
oceurs discontinuously at the parameter value 4 and is called a fractal-fractal basin
bifurcation (or metamorphosis). For £ = 0.164 we have established that 4 lies in the
interval 0.3418-0.3420.

Note here that in figure 5 the ¢ = 3 periodic points, 'D? and 'I* have been created
by a fold-flip scenario similar to that illustrated for an ¢ = 6 periodic motion by
Thompson (1989) in his figure 9 (using data supplied by Y. Ueda). Under decreasing
A, a fold at A4 ~ 0.3497 first creates a saddle-node pair, 'D? and 'S® (and the

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 5. Enlargements of the small frames of figure 4, showing attractor-basin features above and
below A, of figure 2a. In the portrait (@), k = 0.164, 4 = 0.345, with fixed points: 'D?, (—0.2590,
—0.3463); I3, (—0.2682, —0.3545); D3 (—0.3194, —0.3855). In the portrait (b), & = 0.164,
A =0.340, with fixed points: D3, (—0.2666, —0.3434); 'I®, (—0.2776, —0.3544); 2D?3,
(—0.3251, —0.3833).

corresponding *D* and 'S*) inside the basin of the one-well attractor. The stable
solution, 'S?, then experiences a period-doubling bifurcation at 4 ~ 0.3482 generating
113 followed rapidly by a complete cascade to a chaotic attractor which finally
vanishes at a blue-sky catastrophe. This fold—flip—cascade—crisis scenario occupies an
extremely small parameter range, and the corresponding basins of attraction are
restricted to very small areas of phase space: indeed the aspects of this scenario can
only just be resolved by very precise numerical investigations.

The fold and flip in this scenario are precisely those described by Gavrilov &
Shilnikov (1972, 1973), who prove that similar events are expected for periodic
points of all orders. However, in our experience, the primary observable effect of
these complex bifurcations, namely the appearance of attractors, is extremely slight
for low-order periodic points, and virtually nil for higher periodic points. Indeed, our
main concern here is not with 'S® or 'I?, but with *D? and its role in defining the basin
of the resonant motion.

4.3. Smooth-fractal basin bifurcations

Figure 6 shows the attractor-basin phase portraits for two values of 4 just above
and below the critical value of 4y marked in figure 2a. Here, with £ = 0.164, 4 lies
in the range 0.3291-0.3292, and at 4 the fractal structure of the basin boundary
disappears instantaneously. Moreover, with decreasing A a cascade of flip
bifurcations transforms the two one-well periodic attractors into chaotic attractors.
Each of these chaotic attractors, visible in figure 66, is a simply folded band,
containing the inversely unstable fixed point 'I (or 'I"), whose outstructures intersect
in a dollar-sign pattern (see Rossler 1976, 1979).

We have also made during the course of this investigation a white and light-grey
study to observe, in addition, the boundary between the two one-well chaotic
attractors. This diagram, not reproduced here, shows clearly that the inner boundary
is still fractal although the outer boundary is now smooth.
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Figure 6. Attractor-basin phase portraits for two values of 4 straddling A, of figure 2a. In the
diagram (a), k = 0.164, 4 = 0.332; in the diagram (b), k = 0.164, 4 = 0.327.

The sudden and dramatic penetration of the bulk of the white basin during the
small parameter change from figure 66—« could have severe consequences for the
integrity of an operating engineering system: it is an example of the type of basin
erosion highlighted recently by Soliman & Thompson (1989).

5. The invariant manifolds and their tangencies

To understand the mechanisms governing these various phenomena, we now look
more closely at the invariant manifolds of the saddle cycles. We adopt the neat
terminology introduced by Christopher Zeeman, referring to a stable manifold as an
inset, an unstable manifold as an outset, and we call the totality of the invariant
manifolds the outstructures, following Abraham (1985).

5.1. Saddle outstructures and the basin bifurcations

The recent studies of Grebogi et al. (1987) have shown that a basin boundary
bifurcation (metamorphosis) of the Hénon map is governed by a homoclinic tangency
of the inset and the outset of a saddle. Here we identify a similar situation in the
discrete Poincaré mapping derived by stroboscopic sampling of our forced Duffing
oscillator, when we investigate the mechanisms underlying figure 2.

The schematic diagrams of figure 7 are sketches of the outstructures of the hill-top
saddle 'D and the ¢ =3 periodic point 2D3, corresponding to the fractal-fractal
metamorphosis of figures 4 and 5. These are based on detailed numerical
constructions of the outstructures ; however, because some features are difficult to see
in the original computer-generated plots, we have drawn schematic diagrams for
clarity. Insets and outsets can be distinguished by the arrows. In figure 7a the
branch of the outset of 2D?® which tends towards the non-resonant attractors
(indicated by double arrows) is close to, but does not cross, the inset of 2D?, and so
does not form a homoclinic cycle (the other outset does). Any orbit starting on the
side of the inset of 2D?® which faces the non-resonant attractors can never reach the
other side of the inset of 2D?, and so can never reach the resonant attractor. The inset
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of 2D? thus acts as a barrier shutting out the tails of the resonant attractive domain,
and constitutes the basin boundary for the non-resonant attractors. But remember
that the resonant attractor 2S has a fractal basin, and outside the insets of 2D? there
are accumulated the infinitely narrow fractal tails of the resonant basin. This is
because the branch of the outset of ?D?® directed away from the non-resonant
attractors (indicated by single arrows) is homoclinic, so orbits started on that side of
the inset of 2D?® may eventually reach either the resonant attractor or the non-
resonant attractors. (Indeed, this outward branch of the outset of >D? transversely
intersects the inset of 2D, and the outset of 2D intersects the inset of 2D3; i.e. there
is a Smale cycle involving 2D and 2D?.) We should emphasize that in figure 7a, b the
dotted region is not a basin of attraction, the dots serving simply to highlight the
position of the relevant inset.

In figure 7b the branch of the outset of ?D?® tending toward the non-resonant
attractors (indicated by double arrows) has now moved to intersect the inset of 2D3,
creating homoclinic cycles. As a consequence, the inset of *D? no longer forms a
barrier to the incursion of the narrow resonant tails: this role is taken by the inset
of 'D3, which has already appeared. In the terminology of Grebogi et al. 'D? is now
the new accessible orbit. So we see that in this case the fractal-fractal basin
bifurcation coincides with a homoclinic tangency of the inset and the outset of D3
at 4.

As a note of explanation, it is perhaps worth emphasizing here that no trajectory
can ever ‘climb the wall’ represented by an inset. However, when the inset becomes
tangled, ‘climbing the wall’ should be understood in a local sense: although there
are still two sides of the wall, the global structure of a tangled inset is often so
complicated that a trajectory may superficially appear to end up on the other side.

In figure 7¢ we give a sketch of the outstructures of the ¢ = 3 periodic point 'D3?
corresponding to the left-hand well, for the same parameter values as figure 7b. We
note that the inward branch of the outset of 'D? is not homoclinic in figure 7¢, just
as the inward branch of the outset of 2D?® was not homoclinic in figure 7a. For this
reason, 'D3 forms a barrier to the incursion of the narrow tails of the resonant
attractor basin. This explains why in figure 5b we find no points of the basin of S
in the region lying roughly to the right of 'D?, that is, on the inward side of the inset
of 'D3.

Finally, we observe that the inward branch of the outset of *D? (indicated by
double arrows) is always heteroclinic with the inset of 'D, in figure 7a, b. For this
reason, when 2D?® becomes homoclinic, the tails of the resonant attractor basin
become tangled with the (previously tangled) basins of 'S and 'S’". That is, in figure
7a the basins of 'S and 'S’ are tangled but adjacent and complementary, whereas in
figure 7b we expect to find tails of the resonant attractor basin separating portions
of the basins of S and 'S’

Turning now to the smooth-fractal basin bifurcation of figure 6, the relevant
outstructures of the saddle point 2D are sketched in figure 8. Figure 8a corresponds
qualitatively to figure 5 of Grebogi et al. (1987), but the mapping within our tangle
has a rather different structure. Most noticeably, our mapping contains the i = 1
unstable periodic point 'D with positive multipliers inside the tangle, plus a pair of
¢ = 1 unstable periodic points 'I and 'I’ with negative multipliers; whereas their
Hénon map tangle encloses only a single inversely unstable (I) ¢ = 1 periodic point
with negative multipliers, and no directly unstable (D) ¢ = 1 periodic point. This
difference of structure inside the tangle also corresponds to a different Birkhoff
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Figure 7. Schematic diagrams of the out structures (invariant manifolds) for the fractal-fractal
basin bifurcation, with () and (b) corresponding to the diagrams of figure 4. Sketch (c) is a blow-
up of the neighbourhood of the left-hand-well attractor. In (@) and (b) the dotted region is not a
basin of attraction, the dots being used as a visual aid to highlight the position of the inset.
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Figure 8. Schematic diagrams of the out structures (invariant manifolds) for the smooth-fractal
basin bifurcation corresponding to A of figure 2a and to figure 6a, b. The dot screen represents the
resonant basin.

signature: in our case, when we number the points of homoclinic tangency
consecutively, ..., H ,, H_,, H,, H,, H,, ..., so that H is adjacent to H,, etc., we find
that H, is mapped after one forcing cycle to H,, while H_, is mapped to H,. So in our
tangle the dynamics defines two distinct, interlaced sequences of homoclinic
tangency points, whereas in the Hénon tangle there is only one sequence of tangency
points.

5.2. Codimension-two bifurcations of basins and attractors

Having examined in detail the major basin bifurcations occurring in this region of
parameter space, and the underlying structure of insets and outsets of the most
important saddle points, we are prepared for a more comprehensive view of
bifurcation patterns in parameter space. We continue to focus attention on the
region of the (4, k) parameter space shown in figure 9. Here a number of important
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Figure 9. Two representations of the bifurcation arcs in the region of interest in the (4, k)
parameter space. The three codimension-two events serve to organize the bifurcation set of figure 1.
Homoclinic tangencies are (z) 2D, (i) 2D?, (éit) *D3.

bifurcations come together in an intricate pattern that can be regarded as a backbone
for the bifurcation set in a more extended régime, as seen in figure 1. Parameter
values corresponding to the attractor-basin phase portraits of figures 4, 6 (and 11)
are marked in figure 9b by small circles on the horizontal line (a). The lines (a), (b)
and (c) in figure 96 show the paths of the attractor bifurcation diagrams of figure 2.

We can note first that the steady state 2m-periodic resonant motions exists
throughout the whole domain of figure 9. Additionally, we have to the right of arc
A . the non-resonant single well motions, there being no single-well motions to the
left of this bifurcation arc. The fine arcs running roughly parallel to the escape arc
are the low-order flip bifurcations corresponding to the start of the period-doubling
cascade which converts the single-well motions, under decreasing A4, into chaotic
single-well attractors (cf. figure 6b) which then undergo catastrophic bifurcation at
A .- The numerical values (1, 2,4) in the regions in figure 96 show the order of these
one-well periodic attractors.

Apart from the arcs locating these flip bifurcations, there are three major
bifurcation arcs indicated in figure 95, labelled 4., A4 and A. Bach of these arcs
has an intrinsic definition as a homoclinical tangency of certain invariant manifolds.
Thus the arc labelled Ay is intrinsically defined as the locus in (4, k) space where 2D?
has a homoclinic tangency, involving the inward branch of the outset. Although this
intrinsic definition of the arc applies over the full range of (4, k) values in figure 9,
it will be noted that the effect of this global bifurcation on the attractor-basin
portrait will differ depending on which segment of the arc is crossed. The intrinsic
definitions and the attractor-basin descriptions are summarized in figure 9a; we shall
now examine further the relations among these bifurcations.
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Figure 10. Schematic representations of the three codimension 2 events, showing attractor and
basin explosions. Homoclinic tangencies are (i) 2D, (1) 2D3, (121) 1 D3.

For example, we have seen that crossing 4, on the horizontal line (a) in figure 96,
there is an explosion in size of the basin of 28, at the expense of the basins of 'S and
!S". The same is true crossing 4, anywhere in the dot-dashed segment, below 4.
But if 4, is crossed above A, in the dashed segment, there is no explosion in basin
locus, even though 2D? still reaches homoclinic tangency.

These facts are summarized by figure 10a, in which simplified schematic diagrams
suggest the relations of the insets of the key saddle points to the loci of basins of
attraction (of course the representation of insets by circles is only a schematic
device). For any uniformly dissipative dynamical system in euclidean phase space,
insets and basins must always extend (backward in time) to infinity. We have chosen
bounded representations for insets and basins in order to clarify the relative locations
of the sets. It might be imagined, for example, that a transformation of phase space
has been applied that brings the outer reaches of the phase space into a bounded
region.

We note that the use of a circle to stand for an inset has a specific justification in
cases where the inset is transversely homoclinic. The circle may then represent not
the inset, but the maximal bounded invariant set associated with the tangle; that is,
the ensemble of homoclinic points and related periodic points, the latter being dense
in the invariant set. This bounded invariant set has a roughly annular shape, and
may act as a separator if the underlying fixed point is of D type. The bounded
invariant set of a tangled separator has been called a chaotic saddle (Stewart 1987).
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x
Figure 11. Attractor-basin phase portrait for £ = 0.164, 4 = 0.325, showing the large cross-well
chaotic attractor approaching a blue-sky collision with 2D as k is reduced towards the bifurcation
arc A.

Beginning in the upper quadrant of figure 10a, we have a basin configuration
similar to figure 6b, with the basin boundary of 2S being smooth. Moving to the right
quadrant, a homoclinic tangency of 2D causes a first inward explosion of the basin
of 28, similar to figure 4a. Proceeding to the lower quadrant causes a second inward
basin explosion, similar to figure 4b. If instead we move from the upper quadrant of
figure 10a to the left quadrant, no explosion is observed; only upon crossing to the
lower quadrant do we find a chained or compounded basin explosion, which was
prepared by the tangency of 2D? but only realized by the tangency of *D. We believe
that such a chained explosion pattern is a generic codimension-two global bifurcation
of dissipative dynamical systems. In particular, any small change of a parameter
other than (4, k), such as a, would simply alter the location of this codimension-two
point in the (A4, k) parameter space, leaving its qualitative features unchanged.

Note that the inward branch of the outset of 2D is always transversely heteroclinic
to the inset of 2D? in this régime. So if the outset of ?D? transversely intersects the
inset of 2D, then 2D and 2D? form a Smale cycle, and the inward branch of the outset
of 2D is necessarily homoclinic. In this régime, the converse is also true: if the inward
branch of the outset of 2D is transversely homoclinic, then 2D and *D? form a Smale
cycle. (If this were not the case, we would find it necessary to take account of some
other unstable point of D type, generating an additional, intermediate circle in our
schematic diagram.) Likewise, the inward branch of the outset of ?D? is homoclinic
precisely when 'D? and 2D? form a Smale cycle. Figure 10a should be read keeping
in mind that the dashed circle stands both for the inward homoclinic intersection and
for a Smale cycle with the saddle in the next circle inward.

Another codimension-two bifurcation apparent in figure 9 lies at the intersection
of 4, (homoclinic tangency of *D?) with 4 (homoclinic tangency of 2D). Here three
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of the four bifurcations involve attractors, so it may be helpful to refer again to
figure 2.

Crossing 4., at k= 0.150 as in figure 2b, we see that the one-well chaotic
attractors suffer a blue sky catastrophe at A = 4, transients from either of the
formerly stable chaotic attractors lead to the resonant cross-well periodic attractor.
At the bifurcation threshold, the cne-well chaotic attractors just touch the saddle
points 'D?® and 'D* respectively. The one-well chaotic attractors do not touch the
hilltop saddle 'D at the bifurcation threshold; 'D became transversely homoclinic
prior to the attractor disappearance. Note that 'D is the lowest-order unstable
periodic orbit in the basin boundary of either one-well attractor; indeed we take an
orbit crossing the inset of 'D as our definition of escape. Since the fundamental saddle
remains at a distance from the chaotic attractor when the catastrophic bifurcation
occurs, this is a chaotic saddle catastrophe in the sense of Stewart (1987). This
qualitative description holds whenever 4 crosses 4., below A, in figure 96.

Crossing 4., above A at k = 0.164 as in figure 2a, we again find the one-well
chaotic attractors losing stability, this time via an attractor explosion to a large
cross-well chaotic attractor, as illustrated in the phase portrait of figure 11. This
cross-well chaotic attractor is numerically identical with the closure of the outset of
*D3 (it contains the outsets of 'D? and 'D as well). Note that in figure 11, 2D is near
homoclinic tangency ; if we hold 4 = 0.325 and decrease k from 0.164 so that 4 is
crossed to the left of 4., the homoclinic tangency of 2D causes a blue sky catastrophe
for the large cross-well chaotic attractor. This is a regular saddle catastrophe; the
fundamental saddle in the basin boundary is 2D, which reaches homoclinic tangency
precisely as the blue sky catastrophe occurs. Equivalently, the basin boundary
approaches a loss of regularity at the blue sky catastrophe threshold.

These events are summarized in figure 106, using schematic diagrams similar to
figure 10a. Here solid curves represent attractor bifurcations; the thinner arc is
explosive, while the thicker arcs stand for blue sky catastrophe. The dot-dashed
segment, as in figure 10a, stands for an explosion in locus of a basin. This fourth
leg of the codimension two bifurcation can be seen as preparation for a chained or
compounded bifurcation, combining the attractor explosion with the blue-sky
catastrophe, which occurred as distinct events on the left side of figure 105. The
chaining is prepared by completing a heteroclinic connection from the outward
branch of the outset of !D? to the inset of 2D?® and thence via the outward outset of
2D? to the inset of 2D.

A third generic type of codimension two event occurs near the top of figure 9 where
the bifurcation arcs labelled A (homoclinic tangency of 2D?®) and 4., (homoclinic
tangency of 'D?) intersect. As shown in figure 2¢, there are two distinct chaotic
attractor explosions above this codimension two point. Crossing 4., the one-well
chaotic attractors explode to a single cross-well attractor. This chaotic attractor is
intermediate in size, since it contains the unstable points 'D? and 'D* and their
outsets, but does not contain the unstable motion 2D3. This intermediate size cross-
well chaotic attractor subsequently explodes to a larger chaotic attractor when A,
is crossed ; the larger attractor does contain *D? and its outset, and is essentially the
same as the attractor shown in figure 11.

Starting again from the smaller one-well chaotic attractors to the right of 4, and
below the codimension two intersection with 4, we find that crossing 4;, now has no
effect on attractor size, whereas crossing 4., results in a chained or compound
attractor explosion. This situation is schematized in figure 10c. Here the dashed

Phil. Trans. R. Soc. Lond. A (1990)


http://rsta.royalsocietypublishing.org/

A
A

A
y A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\\‘\

\

//
A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Explosions in the twin-well Duffing oscillator 185

segment of bifurcation arc can be seen as a preparation for the compound explosion:
when the inward branch of the outset of 2D?® becomes homoclinic, the outward
branches of the outsets of 'D? and 'D?* simultaneously form a heteroclinic connection
to the inset of 2D3. Thus 'D? and 'D? are chained to D3, and the subsequent attractor
explosion will bring 2D? as well as 'D? and 'D® inside the chaotic attractor.

Note that in this case, the preparatory bifurcation causes neither a discontinuous
change in attractor nor in basins, but only a discontinuous change in part of the non-
wandering set in the interior of a basin. This change in the non-wandering set effects
only the structure of transients in the basin. As in figures 9 and 10, this most subtle
type of global bifurcation is indicated by a dashed segment of arc.

In short we have identified three distinct types of codimension-two global
bifurcation in the régime of figure 9. Each is an apparently generic pattern in which
two distinct discontinuous bifurcations in the attractor-basin phase portrait become
chained to produce a compound event. A preparatory bifurcation is required in each
codimension two pattern. For the compound blue sky catastrophe, the preparation
causes a basin explosion; but for the compound attractor explosion as well as for the
compound basin explosion, the preparation is a subtle global bifurcation which has
no discontinuous effect on the loci of either attractors or basins. The three types of
codimension two bifurcation dovetail neatly together, organizing the bifurcation
arcs in the regime under study. The codimension-one bifurcations extend to a much
wider range of parameter values, so that the régime under study, although rather
small, is central to the overall behaviour of equation (1).

6. Conclusions

We have studied the occurrence of basin boundary bifurcations in the forced twin-
well Duffing oscillator, as well as global bifurcations of chaotic attractors which lead
to escape from single-well to cross-well motions. We observed that in the régime
considered, escape always occurs as a result of decreasing the forcing amplitude.
Upon considering the underlying invariant manifold structures of the low order
unstable points (harmonic and subharmonic of order 3), we found that the escape
bifurcations and the abrupt, discontinuous basin bifurcations are intimately related,
forming three distinct types of codimension two global bifurcations. These
codimension two patterns appear to be generic for dissipative two-dimensional
diffeomorphisms. At these codimension two points in the (4, k) parameter space, it
becomes clear that the codimension one global bifurcations are only fully
characterized when both their intrinsic definition as tangencies of invariant
manifolds, and their attractor-basin phase portrait consequences are considered
together. Similar phenomena can be expected to occur in the response of many
driven nonlinear oscillators.

Y.U. and S.Y. would like to acknowledge use of the facilities at the Computer Centre of the
Institute of Plasma Physics, Nagoya University, J.M.T.T. acknowledges with thanks the award
of a Senior Fellowship by the Science & Engineering Research Council of Great Britain. H.B.S.
acknowledges support from the Applied Mathematical Sciences Programme of the U.S. Department
of Energy.

Phil. Trans. R. Soc. Lond. A (1990)


http://rsta.royalsocietypublishing.org/

)
B

P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

¥

A

L
A

/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

186 Y. Ueda and others

References

Abraham, R. H. 1985 Outstructures of the Lorenz attractor. In Chaos, fractals and dynamics (ed.
P. Fischer & W. R. Smith). New York: Dekker.

Abraham, R. H. & Shaw, C. D. 1982-8 Dynamics: The geometry of behaviour: part 1, Periodic
behaviour (1982); part 2, Chaotic behaviour (1983); part 3, Global behaviour (1985); part 4,
Bifurcation behaviour (1988). Santa Cruz: Aerial Press.

Eschenazi, E., Solari, H. G. & Gilmore, R. 1989 Basins of attraction in driven dynamical systems.
Phys. Rev. A 39, 2609-2627.

Gavrilov, N. K. & Shilnikov, L. P. 1972-3 On three-dimensional dynamical systems close to
systems with a structurally unstable homoclinic curve. Math. USSR Sb. 88, 467-485; 90,
139-156.

drebogi, C., Ott, E. & Yorke, J. A. 1987 Basin boundary metamorphoses: changes in accessible
boundary orbits. Physica D 24, 243-262.

Guckenheimer, J. & Holmes, P. 1983 Nonlinear oscillations, dynamical systems, and bifurcations of
vector fields. New York: Springer-Verlag.

Hayashi, C., Ueda, Y., Akamatsu, N. & Itakura, H. 1970 On the behaviour of self-oscillatory
systems with external forcing. Electron. Commun Jap. A 53, 31-39.

Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. atmos. Sci. 20, 130-141.

McDonald, S. W., Grebogi, C., Ott, E. & Yorke, J. A. 1985 Fractal basin boundaries. Physica D
17, 125-153.

Moon, F. C. 1987 Chaotic vibrations : An introduction for applied scientists and engineers. New York:
Wiley.

Moon, F. C. & Li, G. X. 1985 Fractal basin boundaries and homoclinic orbits for periodic motions
in a two-well potential. Phys. Rev. Lett. 55, 1439-1442.

Rossler, O. E. 1976 An equation for continuous chaos. Physics Lett. A 57, 397-398.

Rossler, O. E. 1979 Chaos. In Structural stability in physics (ed. W. Guttinger & H. Eikemeier).
Berlin : Springer.

Stewart, H. B. 1987 A chaotic saddle catastrophe in forced oscillators. In Dynamical systems

approaches to nonlinear problems in systems and circuits (ed. F. Salam & M. Levi). Philadelphia :
STAM.

Soliman, M. S. & Thompson, J. M. T. 1989 Integrity measures quantifying the erosion of smooth
and fractal basins of attraction. J. Sound Vib. 135, 453-475.

Thompson, J. M. T. 1989 Chaotic phenomena triggering the escape from a potential well. Proc. R.
Soc. Lond. A 421, 195-225.

Thompson, J. M. T. & Soliman, M. S. 1990 Fractal control boundaries of driven oscillators and
their relevance to safe engineering design. Proc. R. Soc. Lond. A 428, 4-13.

Thompson, J. M. T. & Stewart, H. B. 1986 Nonlinear dynamics and chaos. Chichester: Wiley.

Ueda, Y. 1973 Computer simulation of nonlinear ordinary differential equations and nonperiodic
oscillations. Trans. Japan Inst. electr. Commun. Engrs A 56, 218-225.

Ueda, Y. 1978 Random phenomena resulting from nonlinearity —in the system described by
Duffing’s equation. Trans. Japan Inst. Electr. Engrs A 98, 167-173.

Ueda, Y. 1980 Explosion of strange attractors exhibited by Duffing’s equation. Ann. N.Y. Acad.
Sci. 357, 422-434.

Ueda, Y., Nakajima, H., Hikihara, T. & Stewart, H. B. 1987 Forced two-well potential Duffing’s

oscillator. In Dynamical systems approaches to nonlinear problems in systems and circuits (ed.
F. Salam & M. Levi). Philadelphia: STAM.

Zeeman, E.C. 1982 Bifurcation and catastrophe theory. In Papers in algebra, analysis, and
statistics (ed. R. Lidl), pp. 207-272. Providence: American Mathematical Society.

Phil. Trans. R. Soc. Lond. A (1990)


http://rsta.royalsocietypublishing.org/

